MEMORANDUM

TO: Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: February 21, 2015

FROM: R. Infante

FILE: 1506153

RE:

Data Validation

Air samples

SDG: 1506153A/1506153B

SUMMARY

Full validation was performed on the data for several gas samples analyzed for selected volatile organic compounds by method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999 and methanol method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999. The samples were collected at the Bristol Myer Squib-Building 6 VI facility, Humacao, PR site on June 06, 2015 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1506153A/1506153B.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999; Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006; and the QC criteria of the ASTM method D-1946-modified. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted. In general the data is valid as reported and may be used for decision making purposes.

The data results are acceptable for use.

SAMPLES The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
B6-1IA-2	1506153A-01A	06/07/2015	Air	VOCs
B6-2IA-2	1506153A-02A	06/07/2015	Air	VOCs
B6-2IAD-2	1506153A-03A	06/07/2015	Air	VOCs
B6-AA-3	1506153A-04A	06/07/2015	Air	VOCs
B6-1IA-2	1506153A-01A	06/07/2015	Air	Methanol
B6-2IA-2	1506153A-02A	06/07/2015	Air	Methanol
B6-2IAD-2	1506153A-03A	06/07/2015	Air	Methanol
B6-AA-3	1506153A-04A	06/07/2015	Air	Methanol

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

Holding Times and Sample Preservation

Sample preservation was acceptable.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs (Method TO-15)

The percent relative standard deviations (%RSDs) and response factors (RFs) of all target analytes were within the QC acceptance criteria in the initial calibration. Correlation coefficients (r²) of target analytes were within the QC acceptance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard.

Methanol (Method TO-15)

A one point calibration was urilized. Initial and continuing calibrations meet method specific requirements. Initial calibration retention times meet method specific requirements.

Method Blank/Trip Blank/Field Blank

Target analytes were not detected in laboratory method blanks.

Summa canister met cleaning certification criteria.

No trip/field blank analyzed with this data package.

Surrogate Spike Recovery

The surrogate recoveries were within the laboratory QC acceptance limits in all samples analyzed.

Internal Standard Performance

VOCs and Methanol (TO-15)

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Laboratory/Field Duplicate Results

Field/laboratory duplicates were analyzed as part of this data set. Target analytes meet the RPD performance criteria of +25% for analytes $5\times SQL$.

LCS/LCSD Results

VOCs and Methanol

LCS/LCSD (blank spike) associated with this data package were analyzed by the laboratory. Recoveries and RPD within laboratory control limits. For methanol testing LCS/LCSD was not analyzed.

Quantitation Limits and Sample Results

Dilutions were performed on TO-15 samples (see worksheet).

Calculations were spot checked.

Certification

The following samples 1506153A-01A; 1506153A-02A; 1506153A-03A; 1506153A-04A; 1506153B-01A; 1506153B-02A; 1506153B-03A; and 1506153B-04A were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid. Some of the results were qualified.

Rafae Infante

Chemist License 1888

Client Sample ID: B6-1IA-2 Lab ID#: 1506153A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061008 1.59			lection: 6/7/15 6:04:00 PM alysis: 6/10/15 03:43 PM	
	Rpt. Limit	Amount	Rpt. Limit	Amount	
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)	
Freon 12	0.16	0.49	0.79	2.4	
Freon 114	0.16	Not Detected	1.1	Not Detected	
Chloromethane	0.80	0.68 J	1.6	1.4 J	
Vinyl Chloride	0.16	Not Detected	0.41	Not Detected	
1,3-Butadiene	0.16	Not Detected	0.35	Not Detected	
Bromomethane	0.80	Not Detected	3.1	Not Detected	
Chloroethane	0.80	Not Detected	2.1	Not Detected	
Freon 11	0.16	0.22	0.89	1.3	
Ethanol	0.80	26	1.5	48	
Freon 113	0.16	0.064 J	1.2	0.49 J	
1,1-Dichloroethene	0.16	Not Detected	0.63	Not Detected	
Acetone	0.80	2.0	1.9	4.9	
2-Propanol	0.80	4.0	2.0	9.7	
Carbon Disulfide	0.80	Not Detected	2.5	Not Detected	
3-Chloropropene	0.80	Not Detected	2.5	Not Detected	
Methylene Chloride	0.32	0.17 J	1.1	0.61 J	
Methyl tert-butyl ether	0.16	Not Detected	0.57	Not Detected	
trans-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected	
Hexane	0.16	0.029 J	0.56	0.10 J	
1,1-Dichloroethane	0.16	Not Detected	0.64	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	0.80	0.22 J	2.3	0.64 J	
cis-1,2-Dichloroethene	0.16	Not Detected	0.63	Not Detected	
Tetrahydrofuran	0.80	Not Detected	2.3	Not Detected	
Chloroform	0.16	Not Detected	0.78	Not Detected	
1,1,1-Trichloroethane	0.16	Not Detected	0.87	Not Detected	
Cydohexane	0.16	0.55	0.55	1.9	
Carbon Tetrachloride	0.16	0.10 J	1.0	0.65 J	
2,2,4-Trimethylpentane	0.80	Not Detected	3.7	Not Detected	
Benzene	0.16	Not Detected	0.51	Not Detected	
1,2-Dichloroethane	0.16	Not Detected	0.64	Not Detected	
Heptane	0.16	0.20	0.65	0.82	
Trichloroethene	0.16	Not Detected	0.85	Not Detected	
1,2-Dichloropropane	0.16	Not Detected	0.73	Not Detected	
1,4-Dioxane	0.16	Not Detected	0.57	Not Detected	
Bromodichloromethane	0.16	Not Detected	1.1	Not Detected	
cis-1,3-Dichloroproperie	0.16	Not Detected	0.72	Not Detected	
4-Methyl-2-pentanone	0.16	Not Detected	0.65	Not Detected	
Toluene (3) inchiation	0.16	0.18	0.60	0.67	
rans-1,3-Dichlordpropene	0.16	Not Detected	0.72	Not Detected	
1,1,2-Inchloroethane	0.16	Not Detected	0.87	Not Detected	
Tetrachloroethene 2-Hexanone	0.16	Not Detected	1.1	Not Detected	
2-Hexanone	0.80	Not Detected	3.2	Not Detected	

Client Sample ID: B6-11A-2 Lab ID#: 1506153A-01A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Dil. Facto	or: 1.59	Date of Analysis: 6/10/15 03:43 PM
File Nam	e: 20061008	Date of Collection: 6/7/15 6:04:00 PM
1		

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.16	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.2	Not Detected
Chlorobenzene	0.16	Not Detected	0.73	Not Detected
Ethyl Benzene	0.16	Not Detected	0.69	Not Detected
m,p-Xylene	0.16	0.044 J	0.69	0.19 J
o-Xylene	0.16	Not Detected	0.69	Not Detected
Styrene	0.16	Not Detected	0.68	Not Detected
Bromoform	0.16	Not Detected	1.6	Not Detected
Cumene	0.16	Not Detected	0.78	Not Detected
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected
Propylbenzene	0.16	Not Detected	0.78	Not Detected
4-Ethyltoluene	0.16	0.048 J	0.78	0.24 J
1,3,5-Trimethylbenzene	0.16	Not Detected	0.78	Not Detected
1,2,4-Trimethylbenzene	0.16	0.054 J	0.78	0.26 J
1,3-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,4-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
alpha-Chlorotoluene	0.16	Not Detected	0.82	Not Detected
1,2-Dichlorobenzene	0.16	Not Detected	0.96	Not Detected
1,2,4-Trichlorobenzene	0.80	Not Detected	5.9	Not Detected
Hexachlorobutadiene	0.80	Not Detected	8.5	Not Detected
Naphthalene	0.80	Not Detected	4.2	Not Detected

J = Estimated value.

Surrogates		%Recovery	Method Limits
1,2-Dichloroethane-d4		109	70-130
Toluene-d8		96	70-130
4-Bromofluorobenzene	ar maccade	94	70-130

Client Sample ID: B6-2IA-2 Lab ID#: 1506153A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061009 1.66		of Collection: 6/7 of Analysis: 6/10/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0,17	0.49	0.82	2.4
Freon 114	0.17	Not Detected	0.62 1.2	2.4 Not Detected
Chloromethane	0.83	0.70 J	1.7	1.4 J
Vinyl Chloride	0.17	Not Detected	0.42	Not Detected
1,3-Butadiene	0.17	Not Detected	0.42	Not Detected
Bromomethane	0.83	Not Detected	3.2	Not Detected
Chloroethane	0.83	Not Detected	3.2 2.2	Not Detected
Freon 11	0.63	0.23	0.93	1.3
Ethanol	0.17	0.23 15	1.6	1.3 28
Freon 113	0.63	0.067 J		
			1.3	0.52 J
1,1-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Acetone	0.83	5.3	2.0	13
2-Propanol	0.83	13	2.0	31
Carbon Disulfide	0.83	Not Detected	2.6	Not Detected
3-Chloropropene	0.83	Not Detected	2.6	Not Detected
Methylene Chloride	0.33	0.21 J	1.2	0.72 J
Methyl tert-butyl ether	0.17	Not Detected	0.60	Not Detected
trans-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Hexane	0.17	0.041 J	0.58	0.14 J
1,1-Dichloroethane	0.17	Not Detected	0.67	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.83	0.29 J	2.4	0.86 J
cis-1,2-Dichloroethene	0.17	Not Detected	0.66	Not Detected
Tetrahydrofuran	0.83	Not Detected	2.4	Not Detected
Chloroform	0.17	Not Detected	0.81	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.90	Not Detected
Cyclohexane	0.17	0.99	0.57	3.4
Carbon Tetrachloride	0.17	0.13 J	1.0	0.82 J
2,2,4-Trimethylpentane	0.83	0.066 J	3.9	0.31 J
Benzene	0.17	Not Detected	0.53	Not Detected
1,2-Dichloroethane	0.17	Not Detected	0.67	Not Detected
leptane	0.17	0.54	0.68	2.2
Trichloroethene	0.17	0.045 J	0.89	0.24 J
1,2-Dichloropropane	0.17	Not Detected	0.77	Not Detected
1,4-Dioxane	0.17	Not Detected	0.60	Not Detected
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
cis-1,3-Dichloropropene	0.17	Not Detected	0.75	Not Detected
4-Methyl-2-pentanone	0.17	Not Detected	0.68	Not Detected
Toluene	0.17	0.23	0.62	0.87
rans-1,3-Dichloropropen	0.17	Not Detected	0.75	Not Detected
1,1,2-Trichloroethane	. 1626 L	Not Detected	0.90	Not Detected
Tetrachloroethene Ménde		Not Detected	1.1	Not Detected
2-Hexanone	7 24 2	Not Detected	3.4	1400 Delegied

Page 1

0034 of 0404

Client Sample ID: B6-2IA-2 Lab ID#: 1506153A-02A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061009 Date of Collection: 6/7/15 1.66 Date of Analysis: 6/10/15			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected
1,2-Dibromoethane (EDB)	0.17	Not Detected	1.3	Not Detected
Chlorobenzene	0.17	Not Detected	0.76	Not Detected
Ethyl Benzene	0.17	Not Detected	0.72	Not Detected
m,p-Xylene	0.17	0.036 J	0.72	0.16 J
o-Xylene	0.17	Not Detected	0.72	Not Detected
Styrene	0.17	Not Detected	0.71	Not Detected
Bromoform	0.17	Not Detected	1.7	Not Detected
Cumene	0.17	Not Detected	0.82	Not Detected
1,1,2,2-Tetrachloroethane	0.17	Not Detected	1.1	Not Detected
Propylbenzene	0.17	Not Detected	0.82	Not Detected
4-Ethyltoluene	0.17	0.055 J	0.82	0.27 J
1,3,5-Trimethylbenzene	0.17	Not Detected	0.82	Not Detected
1,2,4-Trimethylbenzene	0.17	0.070 J	0.82	0.34 J
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
alpha-Chlorotoluene	0.17	Not Detected	0.86	Not Detected
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected
1,2,4-Trichlorobenzene	0.83	Not Detected	6.2	Not Detected
Hexachlorobutadiene	0.83	Not Detected	8.8	Not Detected
Naphthalene	0.83	Not Detected	4.4	Not Detected

J = Estimated value.

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	93	70-130

Client Sample ID: B6-2IAD-2 Lab ID#: 1506153A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Compound Freon 12 Freon 114 Chloromethane /inyl Chloride	1.53 Rpt. Limit (ppbv) 0.15 0.15	Amount (ppbv)	of Analysis: 6/10/ Rpt. Limit (ug/m3)	Amount
Freon 12 Freon 114 Chloromethane	0.15 0.15		(ug/m3)	(acadas 2)
reon 114 Chloromethane	0.15	0.48		(ug/m3)
hloromethane			0.76	2.4
	0.76	Not Detected	1.1	Not Detected
'invl Chloride	0.76	0.69 J	1.6	1.4 J
,	0.15	Not Detected	0.39	Not Detected
,3-Butadiene	0.15	Not Detected	0.34	Not Detected
Bromomethane	0.76	Not Detected	3.0	Not Detected
Chloroethane	0.76	Not Detected	2.0	Not Detected
Freon 11	0.15	0.23	0.86	1.3
Ethanol	0.76	15	1.4	29
Freon 113	0.15	0.059 J	1.2	0.45 J
,1-Dichloroethene	0.15	Not Detected	0.61	Not Detected
Acetone	0.76	3.2	1.8	7.7
-Propanol	0.76	13	1.9	32
Carbon Disulfide	0.76	Not Detected	2.4	Not Detected
-Chloropropene	0.76	Not Detected	2.4	Not Detected
Methylene Chloride	0.31	0.22 J	1.1	0.75 J
Methyl tert-butyl ether	0.15	Not Detected	0.55	Not Detected
rans-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected
lexane	0.15	0.050 J	0.54	0.18 J
,1-Dichloroethane	0.15	Not Detected	0.62	Not Detected
-Butanone (Methyl Ethyl Ketone)	0.76	0.31 J	2.2	0.91 J
is-1,2-Dichloroethene	0.15	Not Detected	0.61	Not Detected
etrahydrofuran	0.76	Not Detected	2.2	Not Detected
Chloroform	0.75 0.15	Not Detected	0.75	Not Detected
,1,1-Trichloroethane	0.15	Not Detected	0.83	Not Detected
Cyclohexane	0.15	0.98	0.53	
Sarbon Tetrachloride	0.15	0.96 0.11 J		3.4
	0.76	0.113 0.062 J	0.96 3.6	0.68 J 0.29 J
,2,4-Trimethylpentane Jenzene	0.76 0.15	Not Detected		
,2-Dichloroethane	0.15 0.15	Not Detected	0.49 0.62	Not Detected
				Not Detected
leptane	0.15	0.56	0.63	2.3
richloroethene	. 0.15	0.042 J	0.82	0.23 J
,2-Dichloropropane	0.15	Not Detected	0.71	Not Detected
,4-Dioxane	0.15	Not Detected	0.55	Not Detected
romodichloromethane	0.15	Not Detected	1.0	Not Detected
is-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
-Methyl-2-pentanone	0.15	Not Detected	0.63	Not Detected
oluene	0.15	0.25	0.58	0.93
ans-1,3-Dichloropropene	0.15	Not Detected	0.69	Not Detected
, 1,2-111Chloroethane	U. 15	Not Detected	0.83	Not Detected
etrachloroethene : 10 # 1881	0.15 0.76	Not Detected	1,0	Not Detected

Page 1

Client Sample ID: B6-2IAD-2 Lab ID#: 1506153A-03A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	20061010	Date of Collection: 6/7/15 5:40:00 PM
Dil. Factor:	1.53	Date of Analysis: 6/10/15 05:04 PM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Dibromochloromethane	0.15	Not Detected	1.3	Not Detected
1,2-Dibromoethane (EDB)	0.15	Not Detected	1.2	Not Detected
Chlorobenzene	0.15	Not Detected	0.70	Not Detected
Ethyl Benzene	0.15	Not Detected	0.66	Not Detected
m,p-Xylene	0.15	0.036 J	0.66	0.16 J
o-Xylene	0.15	Not Detected	0.66	Not Detected
Styrene	0.15	Not Detected	0.65	Not Detected
Bromoform	0.15	Not Detected	1.6	Not Detected
Cumene	0.15	Not Detected	0.75	Not Detected
1,1,2,2-Tetrachloroethane	0.15	Not Detected	1.0	Not Detected
Propylbenzene	0.15	0.028 J	0.75	0.14 J
4-Ethyltoluene	0.15	0.080 J	0.75	0.39 J
1,3,5-Trimethylbenzene	0.15	Not Detected	0.75	Not Detected
1,2,4-Trimethylbenzene	0.15	0.066 J	0.75	0.33 J
1,3-Dichlorobenzene	0.15	Not Detected	0.92	Not Detected
1,4-Dichlorobenzene	0.15	Not Detected	0.92	Not Detected
alpha-Chlorotoluene	0.15	Not Detected	0.79	Not Detected
1,2-Dichlorobenzene	0.15	Not Detected	0.92	Not Detected
1,2,4-Trichlorobenzene	0.76	Not Detected	5.7	Not Detected
Hexachlorobutadiene	0.76	Not Detected	8.2	Not Detected
Naphthalene	0.76	Not Detected	4.0	Not Detected

J = Estimated value.

Container Type: 6 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	метлоа Limits
1,2-Dichloroethane-d4	110	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	94	70-130

Client Sample ID: B6-AA-3 Lab ID#: 1506153A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	20061011 1.69	Date of Collection: 6/7/15 5:49:00 Date of Analysis: 6/10/15 05:45 Pl		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 12	0.17	0.51	0.84	2.5
Freon 114	0.17	Not Detected	1.2	Not Detected
Chloromethane	0.84	0.82 J	1.7	1.7 J
Vinyl Chloride	0.17	Not Detected	0.43	Not Detected
1,3-Butadiene	0.17	Not Detected	0.37	Not Detected
Bromomethane	0.84	Not Detected	3.3	Not Detected
Chloroethane	0.84	Not Detected	2.2	Not Detected
Freon 11	0.17	0.23	0.95	1.3
Ethanol	0.84	0.62 J	1.6	1.2 J
Freon 113	0.17	0.055 J	1.3	0.42 J
1,1-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Acetone	0.84	5.0	2.0	12
2-Propanol	0.84	0.40 J	2.1	0.98 J
Carbon Disulfide	0.84	Not Detected	2.6	Not Detected
3-Chloropropene	0.84	Not Detected	2.6	Not Detected
Methylene Chloride	0.34	0.24 J	1.2	0.85 J
Methyl tert-butyl ether	0.17	Not Detected	0.61	Not Detected
rans-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
lexane	0.17	0.026 J	0.60	0.090 J
I,1-Dichloroethane	0.17	Not Detected	0.68	Not Detected
2-Butanone (Methyl Ethyl Ketone)	0.84	0.52 J	2.5	1.5 J
ss-1,2-Dichloroethene	0.17	Not Detected	0.67	Not Detected
Tetrahydrofuran	0.84	Not Detected	2.5	Not Detected
Chloroform	0.17	Not Detected	0.82	Not Detected
1,1,1-Trichloroethane	0.17	Not Detected	0.92	Not Detected
Cyclohexane	0.17	Not Detected	0.58	Not Detected
Carbon Tetrachloride	0.17	0.12 J	1.1	0.74 J
2,2,4-Trimethylpentane	0.84	Not Detected	3.9	Not Detected
Benzene	0.17	Not Detected	0.54	Not Detected
I,2-Dichloroethane	0.17	Not Detected	0.68	Not Detected
leptane	0.17	Not Detected	0.69	Not Detected
Trichloroethene	0.17	Not Detected	0.91	Not Detected
l,2-Dichloropropane	0.17	Not Detected	0.78	Not Detected
I,4-Dioxane	0.17	0.10 J	0.61	0.36 J
Bromodichloromethane	0.17	Not Detected	1.1	Not Detected
sis-1,3-Dichloropropen	0.17	Not Detected	0.77	Not Detected
1-Methyl-2-pentanone	0.17	0.66	0.69	2.7
Toluene / ifael infim		0.12 J	0.64	0.44 J
rans-1,3-Dichloropropene Mendez	0.17	Not Detected	0.77	Not Detected
1,1,2-Trichloroethane \ IC # 1881	0.17	Not Detected	0.92	Not Detected
Tetrachloroethene	0.17	Not Detected	1.1	Not Detected
Tetrachloroethene 2-Hexanone	0.84	Not Detected	3.5	Not Detected

Client Sample ID: B6-AA-3 Lab ID#: 1506153A-04A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

Date of Date o	Date of Analysis: 6/10/15 05:45 P t Amount Rpt. Limit Amo		
File Name: 20061011 Date of Dil. Factor: 1 69 Date	Date of Collection: 6/7/15 5:49:00 PM		

		Date of Alicaysis. Of to 10 05:45 f M			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Dibromochloromethane	0.17	Not Detected	1.4	Not Detected	
1,2-Dibromoethane (EDB)	0.17	Not Detected	1.3	Not Detected	
Chlorobenzene	0.17	Not Detected	0.78	Not Detected	
Ethyl Benzene	0.17	0.040 J	0.73	0.17 J	
m,p-Xylene	0.17	0.14 J	0.73	0.62 J	
o-Xylene	0.17	0.11 J	0.73	0.50 J	
Styrene	0.17	0.019 J	0.72	0.081 J	
Bromoform	0.17	Not Detected	1.7	Not Detected	
Cumene	0.17	0.038 J	0.83	0.19 J	
1,1,2,2-Tetrachloroethane	0.17	Not Detected	1.2	Not Detected	
Propylbenzene	0.17	0.18	0.83	0.91	
4-Ethyitoluene	0.17	0.89	0.83	4.4	
1,3,5-Trimethylbenzene	0.17	0.25	0.83	1.2	
1,2,4-Trimethylbenzene	0.17	1.1	0.83	5.4	
1,3-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected	
1,4-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected	
alpha-Chlorotoluene	0.17	0.056 J	0.87	0.29 J	
1,2-Dichlorobenzene	0.17	Not Detected	1.0	Not Detected	
1,2,4-Trichlorobenzene	0.84	Not Detected	6.3	Not Detected	
Hexachlorobutadiene	0.84	Not Detected	9.0	Not Detected	
Naphthalene	0.84	0. 6 7 J	4.4	3.5 J	

J = Estimated value.

Surrogates	%R	ecovery	Method Limits
1,2-Dichloroethane-d4		121	70-130
Toluene-d8	of Mendo	98	70-130
4-Bromofluorobenzene	ifael Infinite	101	70-130
	Méndez		

Client Sample ID: B6-1IA-2 Lab ID#: 1506153B-01A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061205 1.59	Date of Collection: 6/7/15 6:04 Date of Analysis: 6/12/15 11:46		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	80	Not Detected	100	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	96	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: B6-2IA-2 Lab ID#: 1506153B-02A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061206 1.66			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	83	Not Detected	110	Not Detected

		method
Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	100	70-130

Client Sample ID: B6-2IAD-2 Lab ID#: 1506153B-03A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061207 1.53	Date of Collection: 6/7/15 5:40 Date of Analysis: 6/12/15 12:3		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	76	Not Detected	100	Not Detected

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	102	70-130
Toluene-d8	98	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: B6-AA-3 Lab ID#: 1506153B-04A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14061208 1.69	Date of Collection: 6/7/15 5 Date of Analysis: 6/12/15 1		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	84	Not Detected	110	Not Detected

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	100	70-130
4-Bromofluorobenzene	101	70-130

🕸 eurofins	Air Toxics
------------	------------

Sample Transportation Notice

Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State. Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotline (800) 467-4922

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA 95630-4719 (916) 985-1000 FAX (916) 985-1020

Project Manager Project info: **Turn Around** Lab Use Only Time: Pressurized by: Company AMA ☐ Normal Date: Project # BMS Humacao Address 2700 Wester ester city Purchase State NY Zip 10577 Rush Pressurization Gas: 94-251- 0400 x309 Fax Project Name Building 6 Indus Air N₂ He Date Canister Pressure/Vacuum Time Field Sample I.D. (Location) Lab I.D. Can # of Collection of Collection **Analyses Requested** Initial Final Receipt Final OIR 18:04 TO 15 OZA 17:41 - 7.0 UBA DHA -8.0 canister Not Used No Analysis GL1269 6/8/13 Relinquished by: (signature) Date/Time Received by: (signature) Date/Time/ Notes: 0920 6/8/15 13:00 Report full list of TO-15 Compounds Rélinquished by: (signature) Date/Time Received by: (signature) Relinquished by: (signature) Date/Time Received by: (signature) Date/Time Shipper Name Air Bill # Temp (°C) Lab Condition **Custody Seals Intact?** Work Order # Use Fed Ex 7737 2733 2454 1,000 1506153 No (None Only

	Project Number1506155A
	Date:06/07/2015
DEMENTO OF YOUATH F ODGA	ANIO DAOKAOE
REVIEW OF VOLATILE ORGA	
The following guidelines for evaluating volatile organics we actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the following "Compendium Method TO-15. Determination of Volatile Org Specially-Prepared Canisters and Analyzed By Gas Chr. January, 1999"; USEPA Hazardous Waste Support Branch Analysis of Ambient Air in Canisters by Method TO-15, (SOP)	ofessional judgment to make more informed the sample results were assessed according to ing order of precedence: QC criteria from anic Compounds (VOCs) In Air Collected Informatography/Mass Spectrometry (GC/MS), h. Validating Air Samples. Volatile Organic
QC criteria and data validation actions listed on the data review	
document, unless otherwise noted.	workshoots are norn are primary guidance
The hardcopied (laboratory name) _EurofinsAir_Toxics reviewed and the quality control and performance data summa	data package received has been rized. The data review for VOCs included:
Lab. Project/SDG No.:1506153A/1506153B	Sample matrix:Air
No. of Samples:4	•
Trip blank No.	
Trip blank No.:	
Field blank No.:	***************************************
Equipment blank No.:	
Field duplicate No.: B6-2IA-2/B6-2IAD-2	MS-William and the control of the co
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
X GG/MS Tuning	X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
N/A_ Matrix Spike/Matrix Spike Duplicate	Quantitation Limb
Overall Comments:_Selected_VOC's_by_method_TO-15	<u>; </u>
Definition of Qualiform	-
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect	
a Rala What	
Reviewer: // Way (Maw)	The state of the s
Date: 06/30/2015 \(\)	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
<u> </u>	>	
		\
		*

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	│ All samples analyzed w	 vithin the recommended	 method	holding time
		- 100-100-100-100-100-100-100-100-100-10		

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

DATA REVIEW WORKSHEETS

		Crit	teria were not met see below
GC/MS TUNING			
The assessment o standard tuning QO		o determine if the sample instru	mentation is within the
_X The BFB p	erformance results were	e reviewed and found to be within	the specified criteria.
_XBFB tuning	g was performed for eve	ry 24 hours of sample analysis.	
f no, use professi qualified or rejecte		mine whether the associated date	ta should be accepted,
_ist	the	samples	affected:

If mass calibration is in error, all associated data are rejected.

All criteria were met
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	05/06/15
Dates of continuing calibration	on:06/10/15
Instrument ID numbers:	MSD-20
Matrix/Level:	Air/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, <u>%RSD</u> , %D, r		AFFECTED
05/06/15	2015L0	506A	32 %	1,2,4-trichlorobenzen	All samples
Initial and	continuin	g calib	rations meet method :	specific requirements for	all other compounds.
Initial calib	ration ver	ificatio	n outside control limits	specific requirements for for: carbon tetrachloride on times meet method sp	(154 %R) and 2,2,4-
Initial calib	ration ver	ificatio	n outside control limits	for: carbon tetrachloride	(154 %R) and 2,2,4-

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	_ d_blank_meeth_	method_specif	fic_criteria	
			ation_criteria	
Field <u>/</u> Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/equ	uipment_blanks	_analyzed_with	n_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
~~					

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID

SURROGATE COMPOUND

ACTION

1.2-DICHLOROETHANE**d4**

Toluene-4-BFB

d8

_Surrogate_recoveries_within_laboratory_control_limits					
QC Limits* (Air)					
LL_to_UL70to_130	_70to_13070to_130				

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do r Sample ID:				not meet the criteria. Matrix/Level:		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD_accuracy_	•	_part_of_!	Method_	TO-15;_blank_sp	ike_used_to_assess	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met				
Criteria were not met				
and/or see belowN/A				

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Level/Unit:		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
	Washington and the state of the				
		7.742.00.7.2.2.2	***************************************		
	*				

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS ID

COMPOUND

%R

QC LIMIT

LCS/LCSD_(Blank_spike)_analyzed_in_this_data_package,_recoveries_and_ _laboratory_control_limits_except_the_RPD_of_the_followning_compounds:	RPD_within
2,2,4-trimethylpentane26_%_RPD _Naphthalene34_%_RPD	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs: _B6-2IA-2/B6-2IAD-2	Matrix:Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
DOC		the description			too data ita d
RPL	within the me	uloa periorm	ance criteria for	all analy	tes detected.
					1900 to

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

Actions:

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reration_standards			_control_limits_for_	both_samples
		Television (All All All All All All All All All Al			

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

B6-1IA-2

2-propanol

RF = 1.62523

[] = (56097)(5.0)/(69247)(1.62523)

= 2.49226 ppbv OK

All criteria were metX
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
Dilution was pe	rformed on samples by a	a factor of less than 2.
WITH THE RESERVE TO T		

www.	,,	
	<u> </u>	

B.	Pe	rce	ent	Sol	ids
----	----	-----	-----	-----	-----

List samples which have ≤ 50 % solids	

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

	Project Number:1506153B
	Date:06/07/2015
REVIEW OF VOLATILE ORGO The following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using producision and in better serving the needs of the data users. The USEPA data validation guidance documents in the follow "Compendium Method TO-15. Determination of Volatile Organization of Volatile Orga	ANIC PACKAGE were created to delineate required validation rofessional judgment to make more informed the sample results were assessed according to ving order of precedence: QC criteria from ganic Compounds (VOCs) In Air Collected In aromatography/Mass Spectrometry (GC/MS), ch. Validating Air Samples. Volatile Organic
QC criteria and data validation actions listed on the data revidencement, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxicsreviewed and the quality control and performance data summare.	iew worksheets are from the primary guidance data package received has been
Lab. Project/SDG No.:1506153B/1506153B No. of Samples:4	Sample matrix:Air
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:B6-2IA-2/B6-2IAD-2	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A_ Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Comments:_Methanol_by_method_TO-15	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data	
UJ- Estimated nondetect	
Reviewer: Rafaul Want	
Date: 06/30/2015	

DATA REVIEW WORKSHEETS

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
<u> </u>		
<u> </u>		
<u> </u>		
<u></u>		
<u> </u>		
	11 A 11	
<u> </u>		
	<u> </u>	
,		
	<u> </u>	
	<u> </u>	
	——————————————————————————————————————	<u> </u>
		<u> </u>
		\\

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
				1100
	All samples analyzed w	 vithin the recommended	 method	 holding time
N. N. S. C. ST.				

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples -7 days from sample collection for unpreserved samples, 4° C, no air bubbles. Soil samples -7 days from sample collection.

Cooler temperature (Criteria: 4 + 2 °C): N/A – summa canisters

Actions

40

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

DATA REVIEW WORKSHEETS

List	the	samples	affected:
	use professional judgment to determine d or rejected.	whether the associated data	a should be accepted,
x	BFB tuning was performed for every 2	4 hours of sample analysis.	
x	_The BFB performance results were rev	viewed and found to be within	the specified criteria.
	ssessment of the tuning results is to do rd tuning QC limits	etermine if the sample instrur	mentation is within the
GC/MS	STUNING		
		Crite	All criteria were metX eria were not met see below

If mass calibration is in error, all associated data are rejected.

All criteria were metX
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_06/12/15
Dates of continuing calibration:	06/12/15
Instrument ID numbers:MS	SD-14
Matrix/Level:A	ir/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
One point	t initial cali	bration.			

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be \leq 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_metho	d_blank_meeth_	 _method_speci	fic_criteria	
Summa_c				
Field <u>/</u> Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks	_analyzed_with	n_this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
and the second second					

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SΔ	M	PΙ	F	ID

SURROGATE COMPOUND

ACTION

1,2-DICHLOROETHANE- Toluene- 4-BFB d8

_Surrogate_recoveries_within_laboratory_control_limits			
	A-2		
The state of the s			
QC Limits* (Air)			
LL_to_UL70to_130	_70to_13070to_130		

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds white Sample ID:				the criteria. /Level:	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	_are_not_required_as	-		•	ike_used_to_assess
accuracy_				AND	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

COMPOUND SAMPLE MS CONC. MSD CONC. % RSD ACTION	Sample ID:			Matrix/Level/Unit:			
	COMPOUND		MS CONC.	MSD CONC.	% RSD	ACTION	
		- Allendaria de la companya della companya della companya de la companya della co					
			.2				

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metN/A	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT
LCS/LCS	D_not_applicable	e		
:				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

N/A

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All criteria were metN/A Criteria were not met and/or see below
IX.	LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:Air

Laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
P-10-0-10-0-10-10-10-10-10-10-10-10-10-10		Not	applicable.		· · · · · · · · · · · · · · · · · · ·

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

		All criteria were metX Criteria were not met and/or see below
IX.	FIELD DUPLICATE PRECISION	
	Sample IDs:B6-2IA-2/B6-2IAD-2	Matrix:Air

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
RPD	within lab	oratory and g	enerally accept	able conti	ol limits.
7				1	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	standard_area_and_re ration_standards	etention_times_	within_laboratory	_control_limits_for_	both_samples
			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Calibration check: 06/12/15

methanol

RF = 33.59350

[] = (412503)(400)/(98234)(33.59350

= 50.00 ppbv OK

All criteria were met _X
Criteria were not met
and/or see below

XII. QUANTITATION LIMIT:	11.	QUA	NTIT	NOITA	LIMITS
--------------------------	-----	-----	------	-------	--------

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
Dilution was pe	rformed on samples by a	a factor of less than 2.
		·

		- The second sec
***************************************		The state of the s
Carried Control		

В	.	Ρ	er	C	er	١t	So	dic	S
-			•	·	v		\sim		••

ist samples whic	th have < 50 % sol	ids			
3					
				ALC: CONTRACTOR OF THE CONTRAC	
			Salar etter		

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ) If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)